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| ntroduction and Overview

“Data assimilation refers to three problems in time
series analysis. Given a time seri@s or possible a
continuous function of space and timéz, ) which
may be noisy or incomplete, beginning with time

t = =1 and ending at = 0, the “present,” define
three problems:

» The prediction problem What wilb be in the
future?

» The filtering problem What is the best estimate
w Now, I.e., att = 07

» The smoothing problem: What is the best
estimate ofv for the entire time series?
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Origins of Data Assimilation

Data assimilation probably started with Gauss (18:

Carl Friedrich Gauss, 1777-1855
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Origins of Data Assimilation

...at least he gets the credit. But Legendre publishe
first:

Adrien-Marie Legendre, 1752-1833
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Origins of Data Assimilation

Gauss and Legendre were interestedlanetary
orbits.

o T
e

o T

nese are specified by 6 parameters dtietal
ements

nree observations are necessary to determin

orbital elements.

o If

more than three observations are available

choose elements to minimize:

Z(predicted position — observed position)

2

This Is theleast squares methpthe most basic

concept in data assimilation.
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TheLeast Squares Method

Gauss and Legendre solved grmoothing problem
for planetary orbits

« They assumed the motion of the planets was
described exactly by a solution to the classical
two-body problem.

« The six parameters are equivalent to three initi
velocity components and three initial position
coordinates.

 In the context of data assimilation today, we
would call that a strong constraint method.
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Variational Methods
Given
« Amodel:u;, — Lu="f

- Chosen to mimic the “true” state'’) assumed to

evolve according ta!” — Lu® = f + b for
some random functioh

 Estimated initial conditiomi(0) with random
errore

 Observationz = Hu®) + e,
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Variational Methods
Minimize the cost function:

J(u) = /(ut—Lu—f)TW1(ut—Lu—f)dt+

(u(0) —ug)" V" (u(0) — u) +
(z — Hu)' R '(z — Hu)

The minimizer ofJ is the BLUE ofu if:
E(b!) = W
E(eoeg) =%
E(eObSeT) = R

obs
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Variational Methods

We begin withu a (possibly) vector-valued function
of time.

This formulation generalizes naturally to functions
time and space, in which case:

- L would be a partial differential operator

e The constraint on the initial condition would be
an integral

« There might be a constraint on the boundary
conditions.

We will derive all of the linearized methods from he
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The Representer Method

Without loss of generality, we can sgt= uy = 0. SO:

J(u) = /(ut — Lu)! W (u, — Lu)dt

+u(0)"V1u(0 +ZR a(t))?
= <uu>+ZR — Hju(t;))’

So the cost function defines a positive definite bilin
form< -, - >
( Think dot product)
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The Representer Method

Define the;j'" representer:;:

<Tj,U >= HjU(t]’)

for any admissible function

» The representaepresentshe measurement
functional in terms of the new inner product.

» This allows us to form an orthogonal
decomposition of the space of admissible
functions.
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I Loygoriadl - DeCUNpoation Ol
State Space

Write the minimizeru of the functional/, as:
N
ZAL — Z bj?“j —+ G
j=1

where the),; are constants and

<r,G>=0,j=1,...,N
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Solution In Representer Space

The cost function then becomes:

N
J(U) = Zbibj<7“7;,7‘j>—|—<G,G>‘|‘

1,)=1

N
ZR;l(zj — Zbi <711 >)?
j=1 i

« We might as well pickiG = 0

» Picking nonzerd- doesn’t change the data mis
and can only increase the cost.
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The Representer Method

The original infinite dimensional problem is reduce
to finding a finite number of coefficients:

a—bk — QZb <T]7Tk>_

QZR <7“L7,Zb7°Z <71, TR >

Settingd.J/0b;, = 0 leads to:

Z<7‘j,7‘k> (ijj+z<7“i,7“j>bizj) =
17 1
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The Representer Method

Z<7‘j,7“k> (ijj+z<7”i,7“j>bizj) =
17 1

In matrix form. DefineR = diag(R;) and
M, ; =< r;,r; > therepresenter matrixThe solution
IS then defined by:

(M +R)b=z

whereb Is the vector of representer coefficients anc
IS the vector of observations.
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What Value oShould the Cosl
Function Beat Minimum?
At the minimum,

J = Z(M+R'MM+R)!
(z— MM+ R '2)'R Y (2—M(M+R) 2
(lots of algebfra )
= (M +R)™!
Soz should be a random variable with covariance

M + R andJ is a random variable witly?
distribution on M degrees of freedom.
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Computing Representers

Begin with the simplest case: a linear, scalar ODE;
uw—au = F

F, u(0) unknown. First guesst’ = 0; u(0) =0
Given measurementg of the system at timefs

J = /OT(u — aw)W (0 — au)dt + u(0)V " tu(0) +

1]
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s
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Computing Representers

The ;" representer is defined by

<rj,v >=v(t; fo (t —t;)v(t)dt
Step 1.
Define therepresenter adjointy; = (r; —ar)W 1, so:

T
<71V > = / ot — av)dt +r(0)V v(0)
0

_ / U5t — )o(t)dt
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Computing Representers

Step 2:
Integrate by parts:

/O (—é — aa)vdt + av|T + 15 (0)V"10(0) = v(t;)

Step 3. Solve
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Remarks

 « IS the Green’s function for the initial value
problem

« As such, in generakt Is the solution to an adjoir
problem

 Generalization to vector ODEs and PDEsS Is
straightforward

 Generalization to different measurement
functionals Is also straightforward.
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Summary of the Representer
M ethod

« The linear inverse problem is potentially a
minimization problem oveso dimensions

* In practice the observations determine only a
finite number of degrees of freedom

« A guadratic cost function can define a useful
orthogonal decomposition of state space into t
components:

» The space spanned by the representers

« Its orthogonal complement, all members of
which areunobservablgi.e., they give
measurements with value zero, by
construction.
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Summary, continued
« The minimization can thus be carried out over
space of representers

« The representers can (but need not be) calculz
explicitly

* The representers do not depend on the data
weights
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The Variational Approach

Calculate the first variatioh./ of the cost function/
and sevJ = 0 A slightly more general cost function

J(u) = / //ut r1,t) — Lu)W !

(ug(xe,t) — Lu)dridzodt +

// 5131, 332,0)d331d£132‘|‘
—ZTR z

2

wherez Is the iInnovation vector, with components
Zj — yj — Hju.
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The Variational Approach

As before, write:

A= (u — Lu)W™!
Foru — u+dusetdJ = J(u+ou) — J(u) = O(du?)
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The Euler-L agrange Equations

N —L*\N = Z’R'H
MT) = 0
u(x,0) = Az, 0)v(0)
u— Lu = WA

Write A = } _; a;a; where then; are therepresenter
adjoints

—Ozjt —L*Oéj — Hj5(t—t]’)
a(T) = 0

— the representer solution: Bennett (1992, 2002) «
the tutorial at http://iom.asu.edu,. ...



Filtering

Recall thefiltering problem

Given a time seriesy., or possible a continuous
function of space and time(z, t) which may be
noisy or incomplete, beginning with time= —7" and
ending at = 0, the “present,” What Is the best

estimate ofv?
Given current observations, we wibtrevise our

estimate of past states.
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Filtering

Consider a model with state vector
Consider a single step of a prediction-analysis cyc

1. Given an initial conditiori, att = ¢, predict the

new statau; at the next time;: ul = Lu,.

2. Given observationg at timet;, form an
improved estimat&? = u/ + v, of the statan;

3. As before, If full system is linear, the correctior
Vo1 go by the same dynamics as
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Flitering. Variational Formula-
tion
Cost function:

J = Vgpo_lVo + (vi — LVO)TQ_l(Vl — Lvy)
+(z — Hvl)TR_l(z — Hvy)

z:y—Hu{r
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Flitering. Variational Formula-
tion
Minimization of J by the representer method leads

vi = (LR L* + Q)H" [H(LP,L* + Q)H" + R] 'z

Recallv, is the correction to the first guess.
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Putting it all together

uf =u] + (LRL* +Q)H” [H(LPL* + Q)H" + R]
This is usually broken down into steps:

1. u! = Lu,

2. Pl = LP,L* +Q
—1
3. K = P/ HT [HP{HT + R}

4. u¢ =ul + K(y — Hu!)
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Statistics

We assume our model, given by:

U1 — Luj
differs from the “truth” by some random errer

ujJrl Lu 4@

e is white in time with covariancé& (ee’) = Q
The error in the state is given lay = uj, — ug

with covariancel, = E(eoeo) at timet = 0.

The observation error Is white with mean zero and
covariance R.
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Filtering: Statistics

Then:
The state error covariance evolves according to:

P/ = E(e1el) = LE(epel ) L* + Q
The error In the corrected state should be smaller 1

the error in the original state. The covariance of the
error in the updated state Is:

P*= (I — KH)P/
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The Filter Solution

Putting it all together:
1. u = Lu,
2. Pl = LPL*+ Q
~1
3. K = P/HT [HP{HT + R}
4. uf = U{+K(Y—HU{)

5. Pt = (] — KH)P/
This 1s theKalman Filter.
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Remarks

« This is one of many ways to derive the Kalman
filter

« Implementation is straightforward, but potentia
very expensive

* Not necessary to write complex adjoint code
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Remarks

« There are many natural generalizations and
simplifications of the KF:

» Use a nonlinear model for the state evolutic
and linearized dynamics to calculate the
evolution of the error covariance; this Is the
extended Kalman filter

» Use a static form of the error covarian€e
and eliminate the repeated calculations.

» Use a collection of model runs with random
chosen Initial conditions and forcing to
calculate an approximate covariance. This
theensemble Kalman filter

* Neglect errors outside of a low-dimensiona
subspace of the full state space. This is the
reduced state space Kalman filter... ... _



Summary

* We have explored solving the linear inverse
problem by the least squares method

 In variational form, the cost function gives a
natural orthogonal decomposition of space an
allows us to reduce the problem to manageabl

s|ze.

« The representer is one way to derive the Kalm
filter.
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Final Thought

- Data assimilation is a highly technical subject

« When you understand the technical aspects, y
are at théveginning, not the endf the subject.
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